Power Business Intelligence In The Data Science Visualization Process To Forecast CPO Prices

Authors

  • Albara Albara Department of Shariah Banking, Universitas Muhammadiyah Sumatera Utara, Indonesia.
  • Al-Khowarizmi Al-Khowarizmi Department of Information Technology, Universitas Muhammadiyah Sumatera Utara, Indonesia.
  • Riyan Pradesyah Department of Information Technology, Universitas Muhammadiyah Sumatera Utara, Indonesia.

DOI:

https://doi.org/10.51601/ijhp.v4i4.257

Abstract

Forecasting is one of the techniques in data mining by utilizing the data available in the data warehouse. With the development of science, forecasting techniques have also entered the computational field where the forecasting technique uses the artificial neural network (ANN) method. Where is the method for simple forecasting using the Time Series method. However, the ability to create data visualizations certainly hinders researchers from maximizing research results. Of course, with the development of the Power BI software, the data science process is more neatly presented in the form of visualization, where the data science process involves various fields so that in this paper the results of forecasting the price of crude palm oil (CPO) are presented for the development of the CPO business with the hope of implementing the Business Process. intelligence (BI) by involving ANN, namely the time series for forecasting. From the final results, accuracy in forecasting with time series involves 2 accuracy techniques, the first using MAPE and getting a result of 0.03214% and the second using MSE to get 962.91 results.

References

M. K. M. Nasution, O. Salim Sitompul, and E. Budhiarti Nababan, “Data Science,” J. Phys. Conf. Ser., vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012034.

G. Vicario and S. Coleman, “A review of data science in business and industry and a future view,” Appl. Stoch. Model. Bus. Ind., vol. 36, no. 1, pp. 6–18, Jan. 2020, doi: https://doi.org/10.1002/asmb.2488.

L. Cao, “Data science: A comprehensive overview,” ACM Comput. Surv., vol. 50, no. 3, 2017, doi: 10.1145/3076253.

M. Molina-Solana, M. Ros, M. D. Ruiz, J. Gómez-Romero, and M. J. Martin-Bautista, “Data science for building energy management: A review,” Renew. Sustain. Energy Rev., vol. 70, pp. 598–609, 2017, doi: https://doi.org/10.1016/j.rser.2016.11.132.

B. V. Dhar, “P64-Dhar_Data_Science_Prediction,” 2013.

N. Tomasevic, N. Gvozdenovic, and S. Vranes, “An overview and comparison of supervised data mining techniques for student exam performance prediction,” Comput. Educ., vol. 143, p. 103676, 2020, doi: https://doi.org/10.1016/j.compedu.2019.103676.

A. R. Lubis, M. Lubis, Al-Khowarizmi, and D. Listriani, “Big Data Forecasting Applied Nearest Neighbor Method,” 2019, doi: 10.1109/ICSECC.2019.8907010.

R. F. Rahmat, A. Rizki, A. F. Alharthi, and R. Budiarto, “Big data forecasting using evolving multi-layer perceptron,” 2016 4th Saudi Int. Conf. Inf. Technol. (Big Data Anal. KACSTIT 2016, 2016, doi: 10.1109/KACSTIT.2016.7756069.

N. Shabbir, R. AhmadiAhangar, L. Kütt, M. N. Iqbal, and A. Rosin, “Forecasting Short Term Wind Energy Generation using Machine Learning,” in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2019, pp. 1–4, doi: 10.1109/RTUCON48111.2019.8982365.

A. Boukerche and J. Wang, “Machine Learning-based traffic prediction models for Intelligent Transportation Systems,” Comput. Networks, vol. 181, p. 107530, 2020, doi: https://doi.org/10.1016/j.comnet.2020.107530.

A. Al-Khowarizmi, O. S. Sitompul, S. Suherman, and E. B. Nababan, “Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas,” J. Phys. Conf. Ser., vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012004.

Y. Demchenko et al., “EDISON Data Science Framework: A Foundation for Building Data Science Profession for Research and Industry,” in 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2016, pp. 620–626, doi: 10.1109/CloudCom.2016.0107.

T. Radivilova, L. Kirichenko, and B. Vitalii, “Comparative analysis of machine learning classification of time series with fractal properties,” in 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), 2019, pp. 557–560, doi: 10.1109/CAOL46282.2019.9019416.

A. R. Lubis, S. Prayudani, and Al-Khowarizmi, “Optimization of MSE Accuracy Value Measurement Applying False Alarm Rate in Forecasting on Fuzzy Time Series based on Percentage Change,” in 2020 8th International Conference on Cyber and IT Service Management (CITSM), 2020, pp. 1–5, doi: 10.1109/CITSM50537.2020.9268906.

R. Gao and O. Duru, “Parsimonious fuzzy time series modelling,” Expert Syst. Appl., vol. 156, p. 113447, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113447.

A. L. Rucitra and M. A. Pradana, “Demand forecasting for crude palm oil (CPO) using the time series method,” IOP Conf. Ser. Earth Environ. Sci., vol. 475, no. 1, 2020, doi: 10.1088/1755-1315/475/1/012059.

M. Handini, “The effect of sludge on oil palm mills with different doses on the growth and yield of two varieties of soybean plants (Glycine max (L.) Merrill),” in Bahasa “Pengaruh pemberian sludge pabrik kelapa sawit dengan dosis yang berbeda terhadap pertumbuhan dan,” Doctoral Dissertation, Universitas Islam Negeri Sultan Sarif Kasim Riau, 2014.

Al-Khowarizmi, I. R. Nasution, M. Lubis, and A. R. Lubis, “The effect of a secos in crude palm oil forecasting to improve business intelligence,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1604–1611, 2020, doi: 10.11591/eei.v9i4.2388.

M. E. Al Khowarizmi, Rahmad Syah, Mahyuddin K. M. Nasution, “Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, 2021, doi: http://doi.org/10.11591/ijece.v11i3.pp%25p.

L. M. D. Yiu, A. C. L. Yeung, and T. C. E. Cheng, “The impact of business intelligence systems on profitability and risks of firms,” Int. J. Prod. Res., pp. 1–24, May 2020, doi: 10.1080/00207543.2020.1756506.

G. Andrienko et al., “Big data visualization and analytics: Future research challenges and emerging applications,” CEUR Workshop Proc., vol. 2578, 2020.

M. Pearson, B. Knight, D. Knight, and M. Quintana, “Administering Power BI BT - Pro Microsoft Power Platform: Solution Building for the Citizen Developer,” M. Pearson, B. Knight, D. Knight, and M. Quintana, Eds. Berkeley, CA: Apress, 2020, pp. 321–330.

E. Bas, U. Yolcu, and E. Egrioglu, “Intuitionistic fuzzy time series functions approach for time series forecasting,” Granul. Comput., no. 2013, 2020, doi: 10.1007/s41066-020-00220-8.

A. Ramírez-Rojas, L. D. G. Sigalotti, E. L. Flores Márquez, and O. Rendón, “Chapter 2 - WITHDRAWN: Stochastic processes,” A. Ramírez-Rojas, L. D. G. Sigalotti, E. L. Flores Márquez, and O. B. T.-T. S. A. in S. Rendón, Eds. Elsevier, 2019, pp. 21–86.

T. C. Mills, “Chapter 1 - Time Series and Their Features,” T. C. B. T.-A. T. S. A. Mills, Ed. Academic Press, 2019, pp. 1–12.

D. S. G. Pollock, “Chapter 19 - Prediction and Signal Extraction,” in Signal Processing and its Applications, D. S. G. B. T.-H. of T. S. A. Pollock Signal Processing, and Dynamics, Ed. London: Academic Press,1999,pp. 575–615.

S. Prayudani, A. Hizriadi, Y. Y. Lase, Y. Fatmi, and Al-Khowarizmi, “Analysis Accuracy of Forecasting Measurement Technique on Random K-Nearest Neighbor (RKNN) Using MAPE and MSE,” J. Phys. Conf. Ser., vol. 1361, no. 1, pp. 0–8, 2019, doi: 10.1088/1742-6596/1361/1/012089.

A. R. Lubis, M. Lubis, and A.- Khowarizmi, “Optimization of distance formula in K-Nearest Neighbor method,” Bull. Electr. Eng. Informatics, vol. 9, no. 1, pp. 326–338, 2020, doi: 10.11591/eei.v9i1.1464.

Downloads

Published

2024-11-26

How to Cite

Albara, A., Al-Khowarizmi, A.-K., & Pradesyah, R. . (2024). Power Business Intelligence In The Data Science Visualization Process To Forecast CPO Prices. International Journal of Health and Pharmaceutical (IJHP), 4(4), 561–569. https://doi.org/10.51601/ijhp.v4i4.257