Optimizing Turbidity Reduction in Tofu Industry Wastewater Using Alum Coagulant
DOI:
https://doi.org/10.51601/ijhp.v4i4.358Abstract
The liquid waste generated by the tofu industry is a significant environmental pollutant, particularly contributing to turbidity in rivers, lakes, and other water bodies. One effective method to address this issue is the treatment of wastewater using alum coagulant. This study aimed to assess the turbidity levels of tofu industry wastewater before and after the application of alum coagulant, as well as to determine the optimal dose or concentration of the coagulant. Conducted in January 2024 at the Public Health Laboratory of Universitas Muhammadiyah Surakarta, this research employed a quantitative approach with a quasi-experimental design. The data analysis utilized quantitative methods, specifically the ANOVA test, to evaluate the effectiveness of the alum coagulant. The findings revealed that turbidity levels in the tofu industry wastewater decreased following the coagulation process: a concentration of 2 ml resulted in a 22.93% reduction, 4 ml led to a 26.24% decrease, 6 ml achieved a 29.08% reduction, and 8 ml produced a 36.41% decrease. Therefore, the optimal concentration of alum coagulant for effectively reducing turbidity in tofu industry wastewater is determined to be 8 ml, as it demonstrated the highest effectiveness in lowering turbidity levels.
References
Anggara, O. C., Asyrofi, A. A. A., Roni, D. R. S., & Putro, A. B. P. (2023). Pengujian Kualitas Air Limbah Industri Tahu di Desa Kuncen Kecamantan Padangan. Aptekmas: Jurnal Pengabdian Kepada Masyarakat, 6(3), 150–156. http://dx.doi.org/10.36257/apts.7412pp150-156
Astuti, D., Sukmawati, N., Asyfiradayati, R., & Darnoto, S. (2022). Kajian Literatur Tentang Reduksi Kromium dalam Air Limbah Penyamakan Kulit dengan Fitoremediasi. Syntax Literate: Jurnal Ilmiah Indonesia, 7(1), 146. https://doi.org/10.36418/syntax-literate.v7i1.5723
Bilotta, G. S., & Brazier, R. E. (2008). Understanding The Influence of Suspended Solids On Water Quality and Aquatic Biota. Water Research, 42(12), 2849–2861. https://doi.org/10.1016/j.watres.2008.03.018
Buana, S., Tambaru, R., Selamat, M. B., Lanuru, M., & Massinai, A. (2021). The Role of Salinity and Total Suspended Solids (TSS) To Abundance and Structure of Phytoplankton Communities in Estuary Saddang Pinrang. IOP Conference Series: Earth and Environmental Science, 860(1), 012081. https://doi.org/10.1088/1755-1315/860/1/012081
Creswell, J. W., & David. (2023). Research Design : Qualitative, Quantitative, And Mixed Method Approaches (6th ed.). Sage Publication.
Cundari, L., Adin, F. A., Jannah, A. M., & Santoso, D. (2022). Processing of Tempe Liquid Waste in Stages Using Combination of Coagulation and Electrocoagulation Methods. Konversi, 11(2), 99–106. https://doi.org/10.20527/k.v11i2.14206
Hardani, Andriani, H., Utami, E. F., Fardani, R. A., Sukmana, D. J., Auliya, N. H., Ustiawaty, J., & Istiqomah, R. R. (2020). Buku Metode Penelitian Kualitatif dan Kuantitatif (H. Abadi (ed.); Cetakan 1, Issue Maret). CV. Pustaka Ilmu Group Yogyakarta.
Hardyanti, N., Susanto, H., & Budihardjo, M. A. (2024). Removal of Organic Matter From Tofu Wastewater Using A Combination of Adsorption, Fenton Oxidation, and Ultrafiltration Membranes. Desalination and Water Treatment, 318, 100255. https://doi.org/10.1016/j.dwt.2024.100255
Hardyanti, N., Susanto, H., Budihardjo, M. A., Purwono, P., & Saputra, A. T. (2023a). Application of Response Surface Methodology (RSM) For Optimisation of Cod Removal From Tofu Wastewater in An Adsorption Process Using Silica Adsorbent. IOP Conference Series: Earth and Environmental Science, 1239(1), 012005. https://doi.org/10.1088/1755-1315/1239/1/012005
Hardyanti, N., Susanto, H., Budihardjo, M. A., Purwono, P., & Saputra, A. T. (2023b). Characteristics of Tofu Wastewater from Different Soybeans and Wastewater at Each Stage of Tofu Production. Ecological Engineering & Environmental Technology, 24(8), 54–63. https://doi.org/10.12912/27197050/171493
Kahar, K., & Prasetia, B. (2023). Gambaran Kadar Biochemical Oxygen (BOD) dan Chemical Oxygen Demand (COD) pada Limbah Cair Industri Tahu. Jurnal Sanitasi Profesional Indonesia, 4(2), 101–110.
Karamah, E. F., Adripratiwi, I. P., & Anindita, L. (2018). Combination of Ozonation and Adsorption Using Granular Activated Carbon (GAC) for Tofu Industry Wastewater Treatment. Indonesian Journal of Chemistry, 18(4), 600. https://doi.org/10.22146/ijc.26724
Peraturan Menteri Lingkungan Hidup Republik Indonesia, Menteri Lingkungan Hidup Republik Indonesia 1 (2014). https://jdih.maritim.go.id/en/peraturan-menteri-negara-lingkungan-hidup-no-5-tahun-2014
Muliyadi, M., & Safrudin, D. J. (2020). Pollutant Levels Comparison in Tofu Industrial and Domestic Wastewater in Ternate City. Jurnal Kesehatan Masyarakat, 15(3), 366–371. https://doi.org/10.15294/kemas.v15i3.20748
Murwanto, B., Sutopo, A., & Yushananta, P. (2021). Coagulation and Filtration Methods on Tofu Wastewater Treatment. Jurnal Aisyah: Jurnal Ilmu Kesehatan, 6(2), 285–292. https://doi.org/10.30604/jika.v6i2.505
Ningsih, L. M., Mazancová, J., Hasanudin, U., & Roubík, H. (2024). Energy Audits in The Tofu Industry; An Evaluation of Energy Consumption Towards A Green And Sustainable Industry. Environment, Development and Sustainability, 0123456789. https://doi.org/10.1007/s10668-024-05109-z
Oktariany, A., & Kartohardjono, S. (2018). Effect of Coagulant Dosage on Tofu Industry Wastewater Treatment in Combination with Ultrafiltration Process using Polysulfone Membrane. E3S Web of Conferences, 67, 04004. https://doi.org/10.1051/e3sconf/20186704004
Oktiawan, W., Samadikun, B. P., Ashari, A. S., & Purwono, P. (2022). The Efficiency of Reducing COD and Turbidity of Tofu Wastewater using A Combination of Electrocoagulation and Ozone. IOP Conference Series: Earth and Environmental Science, 1098(1), 012044. https://doi.org/10.1088/1755-1315/1098/1/012044
Panjaitan, A. J.R.R.Ulinuha,D.,& Ernawati, N. M. (2023). Analisis Total Suspended Solid (TSS) Perairan Danau Toba diKecamatan Girsang Sipangan Bolon, Sumatera Utara. Current Trends in Aquatic Science,6(2), 139–142.
Rahmawati, E., Auvaria, S. W., Nengse, S., Yusrianti, Y., & Utama, T. T. (2022). Analysis of Global Warming Potential in Tofu Industry (Case Study: Industry X, Gresik). Jurnal Serambi Engineering, 7(4). https://doi.org/10.32672/jse.v7i4.4913
Rizal, A. M., Asyfiradayati, R., & Wulandari, E. (2024). Differences in The Reduction of Coliform Bacteria and Escherichia Coli with The Chlorine Diffuser Method Combined With Silica Sand in Clean Water. Science Midwifery,12(3).
Sabarudin, T., & Kartohardjono, S. (2020). The Combination of Coagulation-Flocculation and Membrane Processes to Minimize Pollution of Tofu Wastewater. Evergreen, 7(1), 56–60. https://doi.org/10.5109/2740942
Surachman, R., & Kartohardjono, S. (2020). Application of Combination of Coagulation-Flocculation and Membrane Separation Processes For Tofu Industrial Wastewater Treatment. 030007. https://doi.org/10.1063/5.0003025
Sutrisno, S., & Wulandari, D. (2018). Multivariate Analysis of Variance (MANOVA) untuk Memperkaya Hasil Penelitian Pendidikan. AKSIOMA : Jurnal Matematika Dan Pendidikan Matematika, 9(1), 37. https://doi.org/10.26877/aks.v9i1.2472
Syahza, A. (2021). Metode Penelitian. UR Press. https://www.researchgate.net/publication/354697863_Metodologi_Penelitian
Utama, G. L., Suraloka, M. P. A., Rialita, T., & Balia, R. L. (2021). Antifungal and Aflatoxin-Reducing Activity of β-Glucan Isolated from Pichia norvegensis Grown on Tofu Wastewater. Foods, 10(11), 2619. https://doi.org/10.3390/foods10112619
Zhang, X., Huang, J., Chen, J., & Zhao, Y. (2023). Remote Sensing Monitoring of Total Suspended Solids Concentration in Jiaozhou Bay Based On Multi-Source Data. Ecological Indicators, 154, 110513. https://doi.org/10.1016/j.ecolind.2023.110513.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Findia Wulan Djari, Rezania Asyfiradayati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.