Cyanide-Degrading Indigenous Aspergillus Spp. Isolated From Kabuto, A Southeast Sulawesi Fermented Food
DOI:
https://doi.org/10.51601/ijhp.v5i4.472Abstract
Kabuto is a traditional cassava-roots-based food of Munanese which is resulted from natural fermentation. The natural fermentation is conducted by covering all surfaces of cassava roots with fungal colonies. This experiment aims to study the cassava root fermentation by Aspergillus spp. in order to enhance the nutritive value, especially its impact on cyanide level. Both pure samples and replicated samples of cassava roots were fermented by Aspergillus spp. in a solid-state fermentation medium for six days and with a dryness level of ± 28°C. The products were analyzed to know the water content (%), the total amount of protein (mg), and cyanide detoxification (µg.g-1). Isolate K03, K23, K1c, and K31 were positively impeding activities of antimicrobials and hydrolytic enzymes (amylase and cellulase). The isolates, K03, K23, K1c, and K31 positively impeded the growth of Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 35218. Based on the phenotypic characteristics, the isolate K03, K23, dan K1c, had similarity with Aspergillus niger, while isolate K31 had a similar microscopic and macroscopical features of Aspergillus terreus. The water content of Kabuto decreased starting on the fourth day. The isolate K03, K23, K31, and K1C preserved the water content in kabuto at 7.1%, 6.74%, 8.69%, and 7.07% respectively. The highest protein content was observed from the fermentation by Aspergillus terreus K31 (346 mg) and was able to reduce the cyanide concentration until 0.48 µg.g-1. The optimum fermentation in the preparation of kabuto was achieved at sixth day.
Downloads
References
Sharma R., Garg P., Kumar P., Bhatia S.K., Kulshrestha S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 6(4): 106. https://doi.org/10.3390/fermentation6040106.
Charles A., Sriroth K., Huang T. (2005). Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chem. 92(4): 615-620. https://doi.org/10.1016/j.foodchem.2004.08.024.
Chiwona-Karltun L, Nyirenda D, Mwansa CN, Kongor JE, Brimer L, Haggblade S, Afoakwa EO. Farmer preference, utilization, and biochemical composition of improved cassava (Manihot esculenta Crantz) varieties in Southeastern Africa. Econ Bot. 2015;69(1):42-56. https://doi.org/10.1007/s12231-015-9298-7
Montagnac JA, Davis CR, Tanumihardjo SA. Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Comprehensive Rev Food Sci Food Safety. 2009;8(1):17–27. https://doi.org/10.1111/j.1541-4337.2008.00064.x.
Mtunguja MK, Laswai HS, Kanju E, Ndunguru J, Muzanila YC. Effect of genotype and genotype by environment interaction on total cyanide content, fresh root, and starch yield in farmer‐preferred cassava landraces in Tanzania. Food Sci Nutr. 2016;4(6):791–801. https://doi.org/10.1002/fsn3.345.
Kashala-Abotnes E, Okitundu D, Mumba D, Boivin MJ, Tylleskär T, Tshala-Katumbay D. Konzo: a distinct neurological disease associated with food (cassava) cyanogenic poisoning. Brain Res Bull. 2019;145:87–91. https://doi.org/10.1016/j.brainresbull.2018.07.001.
Oyewole OB, Odunfa SA. Microbiological studies on cassava fermentation for ‘lafun’ production. Food Microbiol. 1988;5(3):125–133. https://doi.org/10.1016/0740-0020(88)90010-x.
Penido FCL, Piló FB, Sandes SHDC, Nunes ÁC, Colen G, Oliveira EDS, Lacerda ICA. Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Braz J Microbiol. 2018;49:823–831. https://doi.org/10.1016/j.bjm.2018.02.001.
Yu B, Jin L, Xia H, Lu Y, Dong M. Bioconversion of cassava stem to ethanol using Aspergillus fumigatus and Saccharomyces cerevisiae. BioResources. 2019;14(3):6895–6908. https://doi.org/10.15376/biores.14.3.6895-6908.
Oso AO, Li L, Zhang B, Uo R, Fan JX, Wang S, Bamgbose AM. Effect of fungal fermentation with Aspergillus niger and enzyme supplementation on metabolizable energy values of unpeeled cassava root meal for meat-type cockerels. Animal Feed Sci Technol. 2015;210:281–286. https://doi.org/10.1016/j.anifeedsci.2015.09.015.
Okrathok S, Pasri P, Thongkratok R, Molee W, Khempaka S. Effects of cassava pulp fermented with Aspergillus oryzae as a feed ingredient substitution in laying hen diets. J Appl Poultry Res. 2018;27(2):188–197. https://doi.org/10.3382/japr/pfx057.
Pothiraj C, Balaji P, Eyini M. Enhanced production of cellulases by various fungal cultures in solid state fermentation of cassava waste. Afr J Biotechnol. 2006;5.
Finegold, S. M., & Baron, E. J. (1986). Bailey and Scott’s Diagnostic Microbiology. 7th ed. C.V. Mosby.
Apun K, Jong BC, Salleh MA. Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbiol. 2000;46:263-267. doi:10.2323/jgam.46.264.
Joetono, J. S., Hartadi, S., Kabirun, Suhadi, & Soesanto. (1973). Pedoman Praktikum Mikrobiologi. Fakultas Pertanian Universitas Gajah Mada; Yogyakarta.
Stackebrandt E, Goebel BM. A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994;44(4):846-849.
Gunawan S, Widjaja T, Zullaikah S, Ernawati L, Istianah N, Aparamarta HW, Prasetyoko D. Effect of fermenting cassava with Lactobacillus plantarum, Saccharomyces cereviseae, and Rhizopus oryzae on the chemical composition of their flour. Int Food Res J. 2015;22(3):1280-1287.
Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol. 2019;2:49-55. doi:10.1016/j.gaost.2019.03.001.
Pang Z, Raudonis R, Glick BR, Lin T, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37:177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013.
Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6:1543-1575. doi:10.3390/ph6121543.
Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18:24-30. doi:10.1016/j.coi.2005.11.004.
Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009;10:585-606. https://doi.org/10.2174/138920309789630589.
Groenink J, Walgreen-Weterings E, van’t Hof W, Veerman EC, Nieuw Amerongen AV. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol Lett. 1999;179:217-222. https://doi.org/10.1111/j.1574-6968.1999.tb08730.x.
Bradshaw J. Cationic antimicrobial peptides: Issues for potential clinical use. BioDrugs. 2003;17:233-240. doi:10.2165/00063030-200317040-00002.
Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides—challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids. 2011;164:766–781. https://doi.org/10.1016/j.chemphyslip.2011.09.004.
Huang YB, Huang JF, Chen YX. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell. 2010;1:143–152. https://doi.org/10.1007/s13238-010-0004-3.
Horwitz, W. (2000). Official methods of analysis of AOAC International. 17th ed. Volume I, Agricultural Chemicals, Contaminants, Drugs. AOAC International.
Berman, J. J. (2012). Taxonomic Guide to Infectious Diseases. 1st ed. Academic Press. ISBN: 9780124159136.
Tetchi AF, Solomen WO, Celah AK. Effect of cassava variety and fermentation time on biochemical and microbiological characteristics of raw artisanal starter for Attiéké production. J Innov Romanian Food Biotechnol. 2012;10.
Gupta A, Gautam N, Modi RD. Optimization of α-amylase production from free and immobilized cells of Aspergillus niger. J Biotechnol Pharm. 2010;1.
Unakal C, Sadashiv SO, Bhairappanavar S, Sindagi A. Screening of endophytic fungus Aspergillus sp. for amylase production. Int J Pharm Health Care Res. 2014;2:40–45.
Schlegel, H. G., & Zaborosch, C. (1993). General Microbiology. Cambridge University Press.
Tivana DL, Bvochora MJ, Mutukumira NA, Owens DJ. A study of heap fermentation process of cassava roots in Nampula province, Mozambique. J Root Crops. 2007;33:119–128.
Zubaidah E, Irawati N. Pengaruh Penambahan Kultur (Aspergillus niger, L. plantarum) dan Lama Fermentasi terhadap Karakteristik MOCAF. J Teknol Pertanian Andalas. 2012;16(2):1–11.
Sonestedt E, Wirfält E, Wallström P, Gullberg B, Orho-Melander M, Hedblad B. Dairy products and its association with incidence of cardiovascular disease: the Malmö diet and cancer cohort. Eur J Epidemiol. 2011;26(8):609–618. https://doi.org/10.1007/s10654-011-9589-yapun
Pineda Mde L, Thompson SF, Summers K, de Leon F, Pope J, Reid G. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit. 2011;17(6):CR347–54. https://doi.org/10.12659/msm.881808.
O'Connor LM, Lentjes MA, Luben RN, Khaw KT, Wareham NJ, Forouhi NG. Dietary dairy product intake and incident type 2 diabetes: a prospective study using dietary data from a 7-day food diary. Diabetologia. 2014;57(5):909–917. https://doi.org/10.1007/s00125-014-3176-1.
Adegboye AR, Christensen LB, Holm-Pedersen P, Avlund K, Boucher BJ, Heitmann BL. Intake of dairy products in relation to periodontitis in older Danish adults. Nutrients. 2012;4(9):1219-1229. doi:10.3390/nu4091219.
Makino S, Ikegami S, Kume A, Horiuchi H, Sasaki H, Orii N. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br J Nutr. 2010;104(7):998–1006.
Moyad MA. Review of lifestyle and CAM for miscellaneous urologic topics (bladder cancer, CP/CPPS, IC/PBS, kidney cancer). Part One. New York, NY: Springer; 2014:231–247. Complementary & Alternative Medicine for Prostate and Urologic Health.
Narva M, Nevala R, Poussa T, Korpela R. The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur J Nutr. 2004;43(2):61–68. https://doi.org/10.1007/s00394-004-0441-y.
Higashikawa F, Noda M, Awaya T, Nomura K, Oku H, Sugiyama M. Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition. 2010;26(4):367-374. https://doi.org/10.1016/j.nut.2009.05.008.
Peguet-Navarro J, Dezutter-Dambuyant C, Buetler T, Leclaire J, Smola H, Blum S, Bastien P, Breton L, Gueniche A. Supplementation with oral probiotic bacteria protects human cutaneous immune homeostasis after UV exposure-double blind, randomized, placebo controlled clinical trial. Eur J Dermatol. 2008;18(5):504–511. https://doi.org/10.1684/ejd.2008.0496.
Kompiang IP, Sinurat AP, Supriyat PT. The effect of using protein enriched sago and its by-products in comparison with fermented cassava fiber in the rations on the performance of broiler chickens. In: Research Results on Poultry and Miscellaneous Animals. Research Institute for Animal Production; 1995. Ciawi, Bogor:490–498.
Raimbault M. General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol. 1998;1.
Sharma N, Kausal R, Gupta R, Kumar S. A biodegradation study of forest biomass by Aspergillus niger F7: correlation between enzymatic activity, hydrolitic percentage and biodegradation index. Braz J Microbiol. 2012;43. https://doi.org/10.1590/S1517-83822012000200006.
Pothiraj C, Balaji P, Eyini M. Raw starch degrading amylase production by various fungal cultures grown on cassava waste. Mycobiology. 2006;34(3):128–130. https://doi.org/10.4489/myco.2006.34.3.128.
Kurniati T, Nurlaila L, Lim. Effect of inoculum dosage Aspergillus niger and Rhizopus oryzae mixture with fermentation time of oil seed cake (Jatropha curcas L) to the content of protein and crude fiber. IOP Conf Ser: J Phys: Conf Ser. 2017;824:012064. https://doi.org/10.1088/1742-6596/824/1/012064.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jendri Mamangkey, Nur Arfa Yanti, La Ode Adi Parman Rudia, La Ode Muhamad Iman Sulaiman, Christina Aryanti Pada Soa, Christyani Dian Winarty Budadana, Adrian Hartanto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



















