The Effect Of Acute Jamu Kunyit Asam After Strenuous Physical Exercise On Creatine Kinase Levels
DOI:
https://doi.org/10.51601/ijhp.v3i3.169Keywords:
Strenuous physical exercise, muscle damage, creatine kinase, jamu kunyit asam, antioxidant, anti-inflammatoryAbstract
Strenuous physical exercise can trigger muscle damage causing an increase in
creatine kinase levels. One of the strategies to prevent muscle damage is to
consume antioxidants and anti-inflammatory. Jamu Kunyit Asam is known to
have antioxidant and anti-inflammatory activity. The aim of this study was to
determine the effect of acutely giving Jamu Kunyit Asam on creatine kinase
levels after strenuous physical exercise. The research sample used 20 trained
males. The sample was divided into two groups (Experiment = 10; Placebo =
10). The pre-test was done by checking creatine kinase levels before engaging
in strenuous physical exercise. After doing strenuous physical exercise by
running on a treadmill with an intensity of 90-100% for 30 minutes, the
experimental group was given 250 ml of Jamu Kunyit Asam every day for 3
days, while the control group was given a placebo drink. Creatine kinase
levels were measured immediately, 24 hours, 48 hours, and 72 hours after
strenuous physical exercise. The results showed that CK levels decreased
significantly 24 hours, 48 hours and 72 hours after strenuous physical
exercise in the Jamu Kunyit Asam group compared to the placebo group
(p<0.05). The conclusion of this study is that giving Jamu Kunyit Asam
acutely after doing strenuous physical exercise can reduce creatine kinase
levels in trained male athletes. Acute Jamu Kunyit Asam supplementation in
this study can help reduce muscle damage due to strenuous physical exercise
through nutritional interventions.
References
Lacombe J, Armstrong M E G, Wright F L, and Foster C 2019 BMC Public Health.
https://doi.org/10.1186/s12889-019-7030-8
Bell S L, Audrey S, Gunnell D, Cooper A, and Campbell R 2019 International Journal of Behavioral Nutrition
and Physical Activity. https://doi.org/10.1186/s12966-019-0901-7
International Journal of of Health and Pharmaceutical
Owens D J, Twist C, Cobley J N, Howatson G and Close G L 2019 Eur. J. Sport Sci19(1)71-85. doi:
1080/17461391.2018.1505957
Powers S, Nelson W B, Powers S K, Nelson W B, and Hudson M B 2010 Free Radical Biology and Medicine,
(5), 942–950. https://doi.org/10.1016/j.freeradbiomed.2010.12.009
Inducido M, and Ejercicio P O R 2019 Rev Bras Med Esporte 25, 509–514.
Brancaccio P, Lippi G and Maffulli N 2010 Clin. Chem. Lab. Med 48(6) 757-67
https://doi.org/10.1515/CCLM.2010.179
Respuestas Y L A S, and Taekwondo A D E 2015 Rev Bras Med Esporte 21, 297–
https://doi.org/10.1590/1517-86922015210495716
Pearcey G E P, Bradbury-squires D J, Drinkwater E J, Behm D G, and Duane C 2015 J Athl Train. 50(1): 5–
50(1), 5–13. https://doi.org/10.4085/1062-6050-50.1.01
Su K, Yu C Y, Chen Y, Huang Y, Chen C, and Wu H 2014 International Journal of Medical Sciences 11(5):
-537. https://doi.org/10.7150/ijms.8220
Davis J M, Carlstedt C J, Chen S, Carmichael M D, and Murphy E A 2014 Int J Sport Nutr Exerc
Metab20(1):56-62. https://doi.org/10.1123/ijsnem.20.1.56
Roca E, Canto E, Nescolarde L, Perea L, Bayes-genis A, Sibila O, and Vidal S 2019 Journal of the
International Society of Sports Nutrition (2019) 16:14. 1–3 https://doi.org/10.1186/s12970-019-0281-z
Mansoori A 2019 Clin Nutr 38(3):1076-1091.https://doi.org/10.1016/j.clnu.2018.05.001
Clifford T, Ventress M, Allerton D M, Stansfield S, Tang J C Y, Fraser W D, Vanhoecke B, Prawitt J, and
Stevenson E 2019 Amino Acids, 51(4), 691–704. https://doi.org/10.1007/s00726-019-02706-5
Liu L, Wu X, Zhang B, Yang W, Li D, Dong Y, Yin Y, and Chen Q 2017. Food and Nutrition Research,
;61(1):1333390.https://doi.org/10.1080/16546628.2017.1333390
Yada K, Roberts L A, Oginome N, and Suzuki K 2020 Antioxidants, 9(1):29
https://doi.org/10.3390/antiox9010029
Liang N, Qian W, Xiaohui W, and Liang S 2016 Can. J. Physiol. Pharmacol. 94: 1–9 dx.doi.org/10.1139/cjpp2016-0086
Mosovska S, and Petakova P 2016 Acta Chimica Slovaca 9(2), 130–135. https://doi.org/10.1515/acs-2016-0022
He Y, Yue ., Zheng X, Zhang K, Chen S, and Du Z 2015 Molecules 20: 9183–9213.
https://doi.org/10.3390/molecules20059183
Shimizu K, Funamoto M, Sunagawa Y, Shimizu S, Katanasaka Y, Miyazaki Y, Wada H, Hasegawa K, and
Morimoto T 2019 European Cardiology Review , 14(2), 117–122. https://doi.org/10.15420/ecr.2019.17.2
Boroumand N, Samarghandian S, and Hashemy S I 2018 J Herbmed Pharmacol 7(4), 211–219.
https://doi.org/10.15171/jhp.2018.33
Peake J M, Neubauer O, Gatta P A D and Nosaka K 2017 J. Appl. Physiol 28(1)33-43
Goel A, Kunnumakkara A B and Aggarwa B B 2008 J. Biochem Pharmacol. Vol 75 (4:787-809).
Surh Y J, Chun K S and Cha H H 2001. J. Mutat Res. Vol 480(1):243-268
Cordero H I, Martin M A Goya L, Ramos S 2015 J. Mol Nut. Food Res. Vol 59(1):597-609
Malhotra A, Nair P, Dhawan D K 2012 J. Ultrastruct Pathol vol 36(1):179-184
Tanabe Y, Chino K, Ohnishi T, Ozawa H, Sagayama H, Maeda S, Takahashi H Scandinavian Journal of
Medicine & Science in Sports vol. 29, no. 4, pp. 524–534, 2019 doi: 10.1111/sms.13373
Roohi B N, Moradlou A N, Hamidabad S M, Ghanivand B 2016 Ann Appl Sport Sci, 4(2):25-31.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fajar Apollo Sinaga, Rika Nailuvar Sinaga, Mandike Ginting

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.